Destination-selective long-distance movement of phloem proteins.

نویسندگان

  • Koh Aoki
  • Nobuo Suzui
  • Shu Fujimaki
  • Naoshi Dohmae
  • Keiko Yonekura-Sakakibara
  • Toru Fujiwara
  • Hiroaki Hayashi
  • Tomoyuki Yamaya
  • Hitoshi Sakakibara
چکیده

The phloem macromolecular transport system plays a pivotal role in plant growth and development. However, little information is available regarding whether the long-distance trafficking of macromolecules is a controlled process or passive movement. Here, we demonstrate the destination-selective long-distance trafficking of phloem proteins. Direct introduction, into rice (Oryza sativa), of phloem proteins from pumpkin (Cucurbita maxima) was used to screen for the capacity of specific proteins to move long distance in rice sieve tubes. In our system, shoot-ward translocation appeared to be passively carried by bulk flow. By contrast, root-ward movement of the phloem RNA binding proteins 16-kD C. maxima phloem protein 1 (CmPP16-1) and CmPP16-2 was selectively controlled. When CmPP16 proteins were purified, the root-ward movement of CmPP16-1 became inefficient, suggesting the presence of pumpkin phloem factors that are responsible for determining protein destination. Gel-filtration chromatography and immunoprecipitation showed that CmPP16-1 formed a complex with other phloem sap proteins. These interacting proteins positively regulated the root-ward movement of CmPP16-1. The same proteins interacted with CmPP16-2 as well and did not positively regulate its root-ward movement. Our data demonstrate that, in addition to passive bulk flow transport, a destination-selective process is involved in long-distance movement control, and the selective movement is regulated by protein-protein interaction in the phloem sap.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-distance movement factor: a transport function of the potyvirus helper component proteinase.

Transport of viruses from cell to cell in plants typically involves one or more viral proteins that supply dedicated movement functions. Transport from leaf to leaf through phloem, or long-distance transport, is a poorly understood process with requirements differing from those of cell-to-cell movement. Through genetic analysis of tobacco etch virus (TEV; potyvirus group), a novel long-distance...

متن کامل

Arabidopsis RTM1 and RTM2 genes function in phloem to restrict long-distance movement of tobacco etch virus.

Restriction of long-distance movement of tobacco etch virus (TEV) in Arabidopsis ecotype Col-0 plants requires the function of at least three genes: RTM1 (restricted TEV movement 1), RTM2, and RTM3. The mechanism of TEV movement restriction remains poorly understood, although it does not involve a hypersensitive response or systemic acquired resistance. A functional characterization of RTM1 and...

متن کامل

Long-distance transport of macromolecules through the phloem

Long-distance phloem transport of small metabolites has long been the subject of many different studies concentrating on resource allocation and signalling between plant organs. Also, phloem movement of viruses has long been examined as the route for systemic infection of the plant. Only recently, the transport of macromolecules, such as proteins and nucleic acids, has received increasing atten...

متن کامل

Immunolocalization of solanaceous SUT1 proteins in companion cells and xylem parenchyma: new perspectives for phloem loading and transport.

Leaf sucrose (Suc) transporters are essential for phloem loading and long-distance partitioning of assimilates in plants that load their phloem from the apoplast. Suc loading into the phloem is indispensable for the generation of the osmotic potential difference that drives phloem bulk flow and is central for the long-distance movement of phloem sap compounds, including hormones and signaling m...

متن کامل

AtTCTP2 mRNA and protein movement correlates with formation of adventitious roots in tobacco

The Translationally Controlled Tumor Proteins, or TCTP, is a superfamily of exclusively eukaryotic proteins essential in the regulation of proliferation and general growth. However, it is clear that these are multifunctional proteins given (1) the pleiotropic effects of its mutations, and (2), the multiple processes in which this protein is involved. TCTP function in general is conserved, since...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 17 6  شماره 

صفحات  -

تاریخ انتشار 2005